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ABSTRACT 

The consequences of a dam failure could be significant in terms of casualties and/or economic and environmental damage. 

Therefore, dam safety is given high priority. As knowledge in the seismicity field has increased, it has been observed that 

several dams fail to meet the revised safety criteria. In recent years, probabilistic methods, such as fragility analysis, have 

emerged as reliable tools for the seismic assessment of dam-type structures. To improve the fragility assessment of such 

structures by considering the influence of modelling parameters and by reducing the computational burden, this study proposes 

the development of a polynomial response surface meta-model. The proposed model will be used to predict the continuous 

maximum relative base sliding of the dam to build fragility curves and show the effect of the modelling parameters uncertainty. 

To do so, an accurate estimate of the seismic demand at the dam site was performed, and finite element samplings of the 

possible system configuration were generated with Latin Hypercube Sampling (LHS). The produced training cases are then 

used to fit polynomial response surface meta-models within a stepwise regression framework. The predictive capabilities of 

the meta-model are evaluated considering local and global goodness-of-fit estimates from 5-fold cross-validation. The best 

performing meta-model is then used to generate analytical seismic fragility curves, which propagate the uncertainty in the 

modelling parameters by considering a range of usable values. Finally, fragility regions are developed that represent the fragility 

curves generated with values corresponding to a 95% confidence interval of the usable range of the modelling parameters 

values; this is done in order to identify the parameter that introduces the most uncertainty in the fragility analysis. The proposed 

methodology is applied to a dam located in north-eastern Canada. It is observed that the variability of the concrete–rock 

cohesion modelling parameter introduces the most uncertainty in the fragility analysis, followed by the drain efficiency and, to 

a lesser extent, the concrete–rock angle of friction.  

Keywords: gravity dams, fragility curves, meta-models, seismic hazard, modeling parameters. 

INTRODUCTION 

Methods for seismic analysis of dams have improved extensively in the last few decades, and growth in the processing power 

of computers has expedited this improvement. Advanced numerical models have become more feasible and manageable and 

constitute the basis of more adequate procedures of designing and assessing. A probabilistic framework is required to manage 

the various sources of uncertainty that may impact the system performance and the related decisions [1]. Fragility analysis, 

which depicts the conditional probability that a system reaches a structural limit state, is a central tool in this probabilistic 

framework. However, current vulnerability assessment methods develop fragility functions by using a single parameter to relate 

the level of shaking to the expected damage, which cannot properly represent the complex loading associated with a seismic 

event [2]. Furthermore, the effect of the variation of the material properties in the seismic fragility analysis is frequently 

overlooked owing to the costly and time-consuming re-evaluation of the numerical model. Seismic response and vulnerability 

assessment of key infrastructure elements often requires several non-linear dynamic analyses of complex finite element models 

(FEM). The substantial computational time may be reduced by using machine learning techniques to develop a surrogate or 

meta-model, which is an engineering method used when an outcome of interest cannot be easily measured directly; thus, a 

model of the outcome is used instead [3]. Therefore, the main goal of this study is to generate polynomial response surface 

meta-models for the seismic assessment of gravity dams and to perform fragility analysis through the use of the best performing 

model. The secondary goal is to explicitly account for the effect of the model parameters variation in the seismic fragility 

analysis and to properly depict the seismic scenario likely to occur at a specific site to enhance the accuracy of the fragility 

estimates. The proposed methodology is applied to a gravity dam located in north-eastern Canada. 
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SEISMIC ANALYSIS OF THE DAM 

Finite element model and the dam considered in this study 

To generate the virtual experimental data needed to develop probabilistic demand models, a nonlinear finite element model of 

the structure was developed to analyse the dynamic seismic response under vertical and horizontal ground motions. As 

mentioned above, the present study focuses on a particular dam located in north-eastern Canada. It comprises 19 unkeyed 

monoliths, a maximum crest height of 78 m, and a crest length of 300 m. The width is 4.6 m at the top and 62 m at the base of 

the largest monolith (Figure 1(a)). The dam rests on a foundation consisting mainly of anorthosite gabbro and granitic 

gneiss [4], which corresponds to hard rock (VS30 > 1500 m/s). The dam was chosen for its simple and almost symmetric 

geometry, as well as for its well-documented dynamic behaviour. In addition, forced vibration test results are available for 

calibration of the dynamic properties of the numerical dam model [4].  

                                 

                                                          (a)                                                                                        (b) 

Figure 1. (a) Cross section and (b) finite element model of the tallest monolith 

The tallest monolith of the dam was considered to be representative of the structure. It was modelled using the computer 

software LS-Dyna [5], as shown in Figure 1(b), following the recommendations of the United States Bureau of Reclamation 

(USBR) [6], and it was analysed using the software’s explicit solver. The proposed model considers the diverse interactions 

between the structure, the reservoir and the foundation. The reservoir is modelled with compressible fluid elements, while the 

concrete body of the dam and the rock foundation were modelled with linear elastic materials. By modifying the properties of 

the dam and the foundation materials, the fundamental period of the dam-reservoir-foundation system turned was 0.25 s, which 

matches the fundamental period from a previous model of the same monolith calibrated from in situ forced vibration tests [4]. 

Further details on the modelling assumptions and the validation of the numerical model can be found in Bernier et al. [7]. 

 

Ground motion records selection 

To proceed with the evaluation of the vulnerability of the dam considered in this study through the development of fragility 

functions, a representative set of ground motion time series (GMTS), which properly accounts for the aleatory uncertainty, is 

necessary [8-9]. A probabilistic seismic hazard analysis (PSHA) was performed at the dam site using the computer software 

OpenQuake [10] to characterize the target earthquake scenarios at various intensity levels. The hazard levels were defined in 

terms of spectral acceleration at the fundamental period of the structure (Sa(T1)) to conveniently cover the range of values 

corresponding to return periods between 700 to 30000 years. To proceed with the selection of a representative set of ground 

motion time series (GMTS), the generalized conditional intensity measure (GCIM) approach [11] was adopted. The purpose 

of using the GCIM approach is to include the most influencing seismic intensity measures (IM) with respect to the structural 

response. For the case of gravity dam-type structures, PGV was found to be one of the best-performing structure-independent 

ground-motion scalar IMs to correlate with damage [12]. Similarly, the vertical spectral acceleration SaV is also expected to be 

relevant in heavy structures of this type. As a result, the set of considered IMs in the GCIM is {SaH(T); SaV(T); PGV}, where 

SaH(T) and SaV(T) are computed at 20 vibration periods in the range of T = [0, 2T1 − 2T1] as proposed by Baker [13], leading 

to a total of 41 IMs to be considered in addition to the conditioning IM, Sa(T1). The GCIM distribution computed using the 

abovementioned IMs was then used to simulate and select 250 ground motions. The records were selected from the PEER 

NGA-West2 database [14] owing to the limited availability of strong ground motion records in the PEER NGA-East 

database [15]. Further details on the PSHA and the record selection procedure can be found in Segura et al. [16]. 



12th Canadian Conference on Earthquake Engineering, Quebec City, June 17-20, 2019 

3 

 

Design of experiments 

To minimize the associated cost of running a dynamic non-linear FEM, while analysing an adequate number of loading 

conditions and structural system configurations, an appropriate experimental design method should be used. Structural and 

material properties likely to affect the seismic response of the structure should be considered, and their associated ranges should 

be based on experimental data or values found in the literature. The procedure used in this study to generate the meta-model 

can be summarized as follows: (i) generate an experimental design matrix for the finite element simulations to generate the 

sample points representing the different configurations of the system, (ii) conduct the finite element simulations for each row 

of the experimental matrix and (iii) fit regression meta-models to the training points. Latin Hypercube sampling (LHS) is 

adopted to generate the sample points representing the different configurations of the system under study. This sampling 

technique was selected because of its ability of dividing the desired range of values for each parameter into n equiprobable 

intervals and then selecting a sample once from each interval, to ensure that the set of samples reflects the entire range of the 

parameters, as demonstrated in past earthquake engineering applications [17-18]. 

Table 1 presents the parameters that were considered as random variables in the numerical analysis of the dam response and 

for which the uncertainty was formally included through their probability distribution function (PDF). All the remaining input 

parameters were kept constant and represented by their best estimate values. For the studied dam, owing to the limited 

availability of material investigations, the probability distributions were defined using the empirical data of similar dams. The 

uniform distribution was used for most parameters except for damping, for which a log-normal distribution was adopted as 

proposed by Ghanaat et al. [19]. 

Table 1. Adopted PDF for the modelling parameters 

Parameters PDF PDF Parameters 

Concrete–rock tensile strength (MPa), CRT Uniform L = 0.2 U = 1.5  

Concrete–concrete tensile strength (MPa), CCT Uniform L = 0.3 U = 2.0  

Concrete–rock cohesion (MPa), CRC     Uniform L = 0.3 U = 2.0  

Concrete–concrete cohesion (MPa), CCC Uniform  L = 0.9 U = 2.5  

Concrete–rock angle of friction (°), CRF Uniform L = 42 U = 55  

Concrete–concrete angle of friction (°), CCF Uniform L = 42 U = 55  

Concrete damping (%), CD Log-normal λ = −2.99 ζ = 0.35  

Drain efficiency, DR Uniform L = 0.0 U = 66  

PROBABILISTIC SEISMIC DEMAND MODEL 

A surrogate, or meta-model, is an engineering method based on techniques that use data to identify the relationships existing 

between the quantities of interest, and it is used when an outcome of interest cannot be easily measured directly, making it 

necessary to use a model of the outcome instead. The basic idea is for the surrogate to act as a "curve fit" to the available data 

so that results may be predicted without recourse to the use of the expensive simulation code. The meta-model considered 

herein is within an adaptive scheme, i.e., the functions in the meta-model can change according to the input data to reduce the 

burden of manual selection of several parameters in the meta-model.  

A polynomial response surface (PRS) is a regression technique where an n-dimensional surface that predicts desired responses 

is developed using a computationally efficient closed-form polynomial function developed from a set number of input 

variables [20]. The sparse polynomial response surface can be represented as:  

  𝑦𝑖 = 𝛉T𝑔(𝐗) + 𝑣 (1) 

In Eq. 1, 𝑦𝑖  is the engineering demand parameter as a result of the finite element model simulation, 𝑔 is a column vector that 

includes explanatory functions that are powers and cross products of powers of the predictors in X up to a predefined degree, 𝛉T 

is the row vector of model parameters, which are unknown constant coefficients, and  𝑣 is the model error due to the lack of fit 

of the surrogate model. In this study, in addition to the original parameters, transformations on the response and predictors are 

also evaluated, including logarithm and natural logarithm transformations. Therefore, for each model, X includes the original 

predictors as well as their transformed forms.  

 Polynomial response surface meta-model 

The response surface methodology in this study is employed to predict the dam’s maximum relative base sliding under seismic 

loads. By selecting various configurations of the model parameters in Table 1, 250 samples of the FEM were generated with 

LHS and paired with the selected ground motions. The maximum relative sliding at the base was computed from non-linear 

simulations, and polynomial response surface meta-models of order 1 to 4 were fitted to the structural response. The final 

models developed for the responses do not include all the explanatory functions in the initial training set and to select the best 
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explanatory functions, the stepwise regression algorithm in MATLAB [21-22] is used. This algorithm starts with a constant 

term to predict the response. In the next step, one explanatory function is added to the model, and the performance of the model 

is evaluated based on the Bayesian information criterion (BIC) [21-22]. If the model performance improves, the added term is 

retained; otherwise, it is removed, and this process is repeated until all explanatory function candidates are tested. As a result 

of this process, the final set of explanatory functions in the final model is a subset of the initial set. The prediction accuracy of 

the developed models is evaluated with the 5-fold cross-validation method [3], in which the available data set is divided into 

five subsets, called folds, and the model is trained on a set comprised of four folds, and the left-out fold is used as the test set. 

Using a new fold as the test set each time, this procedure is repeated five times, and the average root mean square error (RMSE), 

relative maximum absolute error (RMAE) and coefficient of determination (R2) value of the five repetitions is used as the 

model goodness-of-fit. In addition to the 5-fold cross-validation method, which shows the overall accuracy of the model, 

p-values associated with the explanatory functions are controlled to be smaller than 0.05, assuring that the final terms included 

in the model are not selected by chance. Table 2 lists the comparison of the predictive capabilities of the PRS meta-model of 

different orders in terms of goodness-of-fit estimates calculated with the entire training set and from 5-fold cross-validation. 

As can be seen, an overall good performance of the three meta-models is observed, with the PRS of order 4 being the one that 

performs best. 

Table 2. PRS meta-model comparison 

PRS order RMSE RMAE R2 5-CV RMSE 5-CV RMAE 5-CV R2 

O1 0.421 1.877 0.755 0.491 1.211 0.729 

O2 0.367 1.245 0.857 0.381 0.945 0.846 

O3 0.324 1.156 0.889 0.342 0.923 0.876 

O4 0.319 1.024 0.907 0.321 0.898 0.887 

 

Best performing meta-model for maximum relative base sliding prediction 

From the above comparison, the selected surrogate is a polynomial response surface of order 4 (PRS-O4) as a function of three 

model parameters, three seismic intensity measures and their transformations and pairwise products. 

  𝑦 = 𝑔(𝐶𝑅𝐶, 𝐶𝑅𝐹, 𝐷𝑅, 𝑃𝐺𝑉, 𝐼𝑎, 𝑃𝐺𝐴𝑉) + 𝑣 (2) 

  𝑣 ~ 𝒩(0, 𝜎𝑣
2)  (3) 

where CRC, CRF, DR are the model parameters corresponding to the concrete-rock cohesion, the concrete-rock angle of friction 

and drain efficiency, respectively; PGV is the peak ground velocity, 𝑃𝐺𝐴𝑉 is the peak ground acceleration in the vertical 

direction and 𝐼𝑎 is Arias intensity. A normally distributed model error term 𝑣, with zero mean and standard deviation equal to 

the RMSE is added to the selected surrogate model to contemplate the lack of fit. Figure 2 (a) shows that the predicted values 

with the selected meta-model are in agreement with the simulated dataset, while in Figure 2 (b) it can be seen that the residual 

normal distribution error hypothesis is respected. 

SEISMIC FRAGILITY ANALYSIS 

The first step in a seismic fragility analysis is the identification of the limit states that are relevant to the system performance. 

When subjected to strong ground motion, gravity dams may be damaged in different ways. In recent years, typical damage 

modes that could lead to the potential collapse of dams after a seismic event have been identified, and seismic damage levels 

have been established. Preliminary analyses have identified sliding as the critical failure mode for the case study of this dam [7], 

and other failure modes would only occur after sliding has already been observed. As a result, the limit state considered in this 

study is sliding at the concrete-to-rock interface at the base of the dam, which is characterized by the sliding damage states 

presented in Table 3. 

Table 3. Considered limit states for the case study dam  

Sliding damage state Base 

LS0 - Slight 5 mm 

LS1 - Moderate 25 mm 

LS2 - Extensive 50 mm 

LS3 - Complete 150 mm 
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                                                           (a)                                                                                   (b) 

Figure 2. PRS-O4 (a) predicted vs. simulated values and (b) residuals histograms 

 

Dam sample generation and fragility functions 

Regarding the generation of the samples where the meta-model will be evaluated to predict the dam’s response, independence 

between all the model parameters was considered to generate 5 × 105 samples with LHS. The fragility curves were generated 

as a function of PGV, because they came up as the structure-independent scalar seismic intensity measure that correlates the 

most with the analysed damage states [10]. To consider a range of values corresponding to return periods from 700–30000 

years at the dam site, the possible values of PGV were bounded as 0.8 ≤ 𝑃𝐺𝑉 ≤ 20 cm/s.  

To perform the fragility analysis and obtain the fragility point estimates from the meta-models, the multiple stripes analysis 

(MSA) methodology [23] was used. The range of considered values of PGV was divided in 100 intervals and the fragility point 

estimates were generated for each limit state. It should be noted that for a specific site, the seismic IMs are correlated. For the 

dam in this study, and considering the 250 GMTS used to train the meta-models, a linear correlation is to be expected as it can 

be seen from Figure 3. Based on this, the samples of these parameters are taken from a jointly log-normal distribution with 

their respective correlation coefficients. Regarding the modelling parameters CRC, CRF and DR, their uncertainty was 

propagated in the analysis by considering a range of usable values listed in Table 1. 

 

                   

                                  (a)                                                               (b)                                                             (c) 

Figure 3. Linear correlation between the seismic IMs from the GMTS (a) PGV−Ia (b) PGAV−Ia and (c) PGV−PGAV 
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To compute the fragility, a Weibull cumulative distribution function (CDF) was fitted to the data points according to Eq. 4, in 

which 𝛽 > 0 is the shape parameter and 𝜃 > 0 is the scale parameter.  

  𝑃𝑓(𝑃𝐺𝑉) = 1 − exp[−(𝑃𝐺𝑉/𝜃)𝛽] (4) 

Following the recommendations of Baker [23], when using MSA, the maximum likelihood estimation (MLE) method was 

employed to fit Eq. 4 to the fragility point estimates and to approximate its parameters. Figure 4 presents the obtained fragility 

curves. 

                                                         

Figure 4. Fragility curves for the case study dam 

 

Model parameters uncertainty impact in the fragility analysis 

In the fragility curves shown in the section above, the uncertainty related to the model parameters present in the meta-model is 

propagated in the analysis by sampling from the probability density function with LHS. In the same manner, and to explicitly 

account for the variability in the modelling parameters, Figure 5 shows the fragility curves for each limit state in red; the shaded 

areas represent the fragility curves generated with the values corresponding to the 95% confidence interval of the usable range 

of the modelling parameter values (Table 1). A Weibull CDF was used in all cases except for the concrete-rock cohesion, where 

a log-normal CDF provided better goodness-of-fit. It can be seen that the concrete–rock cohesion variability introduces the 

most uncertainty in the fragility analysis, followed by the drain efficiency and, to a lesser extent, the concrete–rock angle of 

friction. 

CONCLUSIONS 

The main objective of this study was to train PRS meta-models of various orders for the seismic fragility assessment of gravity 

dams and to select the best-performing model for the generation of fragility functions displaying the effect of the model 

parameter variation on the dam’s seismic response. Polynomial response surface meta-models of order 1 to 4 were fitted to the 

seismic response of the studied dam selecting as engineering demand parameter the maximum relative sliding at the base of 

the dam. The 250 ground motion time series used for the analysis was selected with the GCIM method considering the 

horizontal and vertical spectral acceleration and PGV. The dataset used to train the surrogate model was generated by pairing 

the LHS sampling of the modelling parameters with the ground motion records. Stepwise regression was used to identify the 

best set of covariates to train the surrogates. The performance of the proposed meta-models was evaluated based on the 

goodness-of-fit estimates from the 5-fold cross-validation. The PRS-O4 came up as the optimal surrogate model to predict base 

sliding seismic response of the studied dam, and it was used to generate general fragility curves as a function of PGV 

considering the correlation between the seismic IMs for a specific site and by sampling from a multivariate log-normal 

distribution. To explicitly account for the variability of the modelling parameters in the fragility analysis, fragility curves were 

generated by propagating the uncertainty of these parameters and by considering the extreme values of the usable range of 

values. It was observed that the modelling parameter affecting the fragility analysis the most is the concrete–rock cohesion. 

Finally, it should be noted that machine learning techniques are indispensable when assessing the vulnerability of structures 

with computationally expensive FEM. Likewise, the use of surrogate models allows the exploration of the impact of different 

parameters in the fragility without the costly re-evaluation of the FEM simulations. Nevertheless, a more thoroughgoing 

exploration of various machine learning techniques to develop surrogate or meta-models that efficiently approximate the 
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seismic response of the dam, besides the PRS method, should be performed to determine the most viable technique for a seismic 

fragility analysis.  

 

                                   

                                                         (a)                                                                                        (b) 

                                  

                                                         (c)                                                                                         (d) 

Figure 5. Fragility curves and 95% confidence interval of the modelling parameters values for 

the case-study dam (a) LS0 (b) LS1 (c) LS2 and (d) LS3 
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